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Abstract-The developing process of the mixed convection flow, in a cifcular tube, the lower half of which 
is maintained at the constant heat-flux condition, is examined. U$ng a fully elliptic Navier-Stokes 
procedure, which is made to satisfy global mass continuity at each interior section, calculations have been 
performed for Pr = 0.7 and 5 at Re = 250. For Gr between 10” and lo’, the vertical secondary flow develops 
almost immediately and increases the heat transfer considerably. The active crossflow motion can cause 
the flow in the upper region to reverse early in the developing region. The natural developed flow is of two- 
vortex type. However, as the temperature gradient builds up near the bottom surface, a new pair of vortices 
could be developed. The flow, in the present parameter range, is shown to develop either type of solution. 
The four-vortex solution is more likely to occur as Pr and/or Gr increase(s). The details of the developing 

process are presented. 

INTRODUCTION 

IT IS well known that gravity plays an important role 
in characterizing mixed convection duct flows. If the 
orientation of the duct is not vertical, the buoyancy 
force induces the secondary flow, which enhances heat 
transfer between the wall and the fluid. Such effects 
are most pronounced in horizontal flows and there 
have been numerous studies for various enclosure 
shapes and thermal boundary conditions. 

Most of the studies in the literature on laminar 
mixed convection in a horizontal duct have been con- 
cerned with the developed conditions [l-4]. Nan- 
dakumar et al. [4] examined the flows in circular and 
square ducts for axially uniform heat-flux and cir- 
cumferentially isothermal boundary conditions. A 
dual solution exists for a certain range of Grashof 
number (Gr) as the Dean problem [S, 61 in the iso- 
thermal curved tubes, i.e. both two- and four-vortex 
crossflow patterns are possible. There have also been 
studies for non-uniform circumferential boundary 
conditions. Patankar et al. [7] treated the mixed con- 
vection flow in a circular tube with the top half insu- 
lated while the bottom half was heated at a specified 
rate. They observed a change in the flow pattern from 
a two-vortex type to a four-vortex one as Gr increases. 
However, they did not report dual solutions. Law et 
al. [8] reexamined the problem in a search for the 
multiple solution. Among the three geometric shapes they 
studied, i.e. square, circular and semicircular ducts, with 
the thermal boundary conditions similar to those in 
Patankar et al., dual solutions were obtained in square 
and semicircular ducts. For the circular duct, however, 
only the two-vortex solution could be found for the 

entire Grashof number range of their study (217~ 
Gr < 105-10h). This finding is in contradiction to that 
of Patankar et al., whose solution exhibits a four- 
vortex pattern above a certain critical Grashof 
number. On the other hand, the recent study by the 
present authors [9] for the circular duct with the same 
boundary conditions revealed that the dual solution 
does exist for the wide range of Prandtl number 
(0.2 d Pr < 10); it also identified the lower end of 
the dual solution region GrCri, for the given Prandtl 
number. 

However, it was still unclear how the flow develops 
eventually to these two different final states. This 
developing process would not only provide some 
insights into the complicated physics involved, but 
legitimize the fully developed solution, i.e. the solution 
is not fictitious but physically obtainable. The subject 
of developing 3-D flow has been relatively unexplored 
[l&16]. Moreover, among the handful that have been 
reported, many adopted some sort of simplification 
to alleviate computational efforts : either invoking the 
large Prandtl number approximation to eliminate 
non-linear inertia terms in the momentum equations 
[lo] or parabolizing the equations in the streamwise 
direction [l l-141. Obviously these approximations 
cannot be applied to a broad class of flow : the para- 
bolic assumption is valid only for relatively small Gras- 
hof number flows since a strong buoyancy force may 
eause the flow to reverse [16]. The works of Hishida 
et al. [ 151 and Yam and Dwyer [16] did not use either 
of the above assumptions. However, the isothermal 
wall condition in their study reduces the buoyancy 
force with increasing axial position and made the 

1899 



1900 D. K. CHOI and D. H. CHOI 

Gr 
9 
k 
NU 
P 
P 
Pr 
Q' 
4 
R 
Re 
r 
T 

NOMENCLATURE 

local friction factor, equation (28) 
tube diameter 
Fanning friction factor, equation 

(26) 
Grashof number, equation (23) 
gravity 
thermal conductivity 
local Nusselt number, equation (28) 
dimensionless pressure, equation (23) 
pressure 
Prandtl number, equation (23) 
rate of heat transfer per unit length 
rate of heat transfer per unit area 
tube radius 
Reynolds number 
radial coordinate 
temperature 

U, V, W dimensionless velocities, equation 

(23) 
U, z’, u’ velocity components in r, 6, z 

directions 
Z dimensionless axial coordinate 

analysis fairly simple ; the secondary motion vanishes 
as the flow bqmes fully developed. Hishida et al. 
[17] later examined the flow development in a hori- 
zontal tube with the uniform heat flux condition for 
moderate Grashof numbers ; no multiplicity of the 
solution was observed. 

The purpose of this study is to investigate the devel- 
opment of $he primary/secondary flow, their effects 
on heat transfer, and bifurcation to those two different 
final states in a circular tube. which is insulated on the 
top half and heated on the bottom half. A clear picture 
of this developing process will also validate the fully 
developed solutions obtained earlier 191. To 
accomplish this, we simulate the flow by the 3-D fully 
elliptic Navier-Stokes and energy equations : the 
SIMPLER algorithm of Patankar [ 181 is modified to 
have the velocity and pressure fields satisfy the global 
continuity at every streamwise location. The scheme 
is found to be efficient and robust even when a large 
region of reversed flow is present. 

SOLUTION PROCEDURE 

ModiJed@IMPLER 
During the iteration cycle of SIMPLER, the con- 

tinuity generally is not satisfied and the overall mass 
conservation can be achieved only after the solution 
is completely converged. In other words, the outlet 
mass flux may not be in balance with the inlet mass 
flux at a given iteration. This is physically incorrect 

Z* inverse Graetz number (= z/D Re Pr) 
Z axial coordinate. 

Greek symbols 

; 

thermal diffusivity 
thermal expansion coefficient 

; 
dimensionless radial coordinate 
azimuthal coordinate 

Y kinematic viscosity 

tk 
density 
dimensionless temperature, equation 

(23) 
Tw wall shear stress in the z-direction. 

Subscripts 
0 forced convection value 
b bulk property 
in inlet value 
W wall value. 

Others 
section average. 

and degrades the efficiency of the algorithm. To get 
around this difficulty, one could either add (subtract) 
a fixed amount of velocity at the exit or make the exit 
velocity proportionally larger (smaller) to match the 
mass flux at both ends [ 19, 201. Even with this correc- 
tion, the global continuity at interior sections is still 
lacking. The correction of pressure which depends on 
the velocity cannot therefore be very efficient. Here, 
we will present a fully elliptic method, which is based 
on the 3-D parabolic algorithm of Raithby and 
Schneider [21], that satisfies continuity in average 
sense at every station. 

The dimensionless equations of continuity and 
momentum for incompressible 3-D flows in Cartesian 
coordinates are written as follows : 

(1) 

where u,v, w are velocity components in x-, y- and 
z-directions, respectively, p the pressure and Re the 
Reynolds number. The woordinate corresponds to 
the streamwise direction. 
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Integration of these equations over the appropriate 
control volume for node i, j, k in a staggered grid 
system (see Fig. 1) gives the following discretized 
equations : 

~&At, = A~~,+,,k+A~~,~,,k+A~~,,+,k 

+A~~o~Ik+A~~i/k+~+A~~ilk~i. (8) 

Following SIMPLER, the pressure p* is computed 
from the Poisson-like pressure equation, which is 
obtained by coupling the momentum and continuity 
equations. For the velocity and pressure fields to 
satisfy the global continuity, the following corrections 
are made at each cross-section : 

h,k+I =P;k+I+6Pk+lt (9) 

i+‘,,k = w;k + &,,, (10) 

It should be noted that the correction for the velocity 
varies over the cross-section while that for the pressure 
is constant in the plane. The rationale for doing so is 
that, since p* is obtained from the elliptic equation, 
its gradient in the cross-section is considered accurate. 
Only the axial pressure gradient which governs mass 
flux through the plane needs to be corrected. In terms 
of these new velocity and pressure, the streamwise 
momentum equation may also be written as 

Aj:W,,k = A,"~',+,,k+A::.w,_,,r+A~w~+,~+A::w,,~,k 

+A:W,,k_, +.$W&, I +(Pl,k--Pi,l.+,)AxA~+S" 

(11) 

The velocity at k+ 1 is still unknown and, hence, W* 
is used in place of W. Subtracting equation (7) from 
(1 I) and noting that bwk_ , = 6pk = 0 since M’~_, and 
pi have already been corrected at station k, we obtain : 

A;h’,,k = A:“~w,+ ,,k + A;.bv_ ,,k + A;&v,,+ ,k 

+A:‘fiw,_,,~6p,+,AxA.),, (12) 

or 

4% = A:f;+,,+A~.~_,,+A,“J;,+, 

+AX_, -AxAy, (13) 

where 

This equation is similar to that of Pratap’s [22] except 
the first four terms in the right-hand side which are not 
accounted for in his method. These terms represent the 
ellipticity of the velocity correction in the plane ; these 
are crucial in making the present procedure more 
efficient and robust as is the difference of SIMPLER 
from SIMPLE (in SIMPLE, the pressure field is 
obtained from the pressure correction equation rather 
than solving the pressure equation directly) [ 181. The 
boundary condition for equation (13) is either f = 0 
or @j/&~ = 0 depending on whether the velocity or 



1902 D. K. CHOI and D. H. CHOI 

Fro. 2. Coordinate system 

the velocity gradient is specified along the boundary. 
Equations (10) and (14) then give : 

Wgk - $!i = .f$Pk+ 1. (1% 
The bulk pressure correction is obtained to satisfy 
global continuity as : 

fiPk+l = 
Q--Q* 

C+,AxAy’ 
(16) 

where Q is the correct volume flux through the cross- 
section k and Q* the volume flux corresponding to 
w*. 

This procedure gives the mass flux through section 
k which is eq@ to that through the inlet plane ; it is 
summarized below. 

(1) 

(2) 

(3) 
(4) 

(5) 

(6) 
(7) 

(8) 

Solve the pressure equation over the entire 
domain to get p*. 
Using p*, u* and u* are obtained from equations 

(5) arid (6). 
W* is calculated by equation (7). 
w and p are corrected to satisfy the global 
continuity. 

I 

Steps (3) and (4) are repeated until the axial 
momentum and global continuity equations at k 
are satisfied (two-three iterations appear to be 
sufficient for the flows tested). 
Repeat steps (3)-(S) until the exit plane is reached. 
Solve the pressure correction equation ; the vel- 
ocity components u, v and w are corrected over 
the whole domain (the pressure is not updated in 
this step). 
Return to step (1) unless the desired convergence 
criteria are met. 

Mixed rtion in the entrance region of a horizontal 
duct 

For a developing mixed convection flow in a heated 
horizontal circular tube, invoking the Boussinesq 
approximation, the dimensionless governing equa- 
tions of continuity, momentum and energy are written 
in the cylindrical coordinate system (r, 0, z) shown in 
Fig. 2 : 

(17) 

(18) 

I!J@ + v 6! + WE +4W/(nRePr) = 
dq q 80 

(21) 

where 

and the dimensionless variables are defined as : 

q = r/D Z = z/D Re = w,,D/v Pr = v/a 

U = u/w>,n V = v/w,, W = w/win toi 

P = p/pw; 
T- Tb 

@ = ~ 
Q’P 

Gr = gBQ’R’/kv’. 

(23) 

Since the flow is symmetric, it suffices to consider only 
half the tube cross-section (0 < 0 < rr). The boundary 
conditions may then be expressed as : 

inlet : 
(I&>=0 W=l 
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outlet : 

a=u a2v a2w a9 -=-_-~----_O 
az= az2 az2 a22 

q = 0.5 : 

U = V = W = 0 (no-slip) 

r/=0.5, o<+ 

a@ 
- = 0 (adiabatic) 
al? 

V/=0.5, ; <8$7C: 

E = a (uniform heat flux) 

8=0,8=7x: 

V = 0 $j! = >y = $ = 0. (symmetry) (24) 

These equations are discretized on a staggered grid 
by integrating the governing equations over control 
volumes. The QUICK scheme of Leonard [23] is 
adopted for the convective terms to reduce the error 
due to numerical diffusion whereas the central diff- 
erencing is used for other derivatives. The equations 
are solved iteratively by using the modified SIMPLER 
algorithm described above and the solution is con- 
sidered converged when the following criteria are met : 

Max (IReso]) < 10m4 

(Q : continuity, U, V, W, CD equations) 
- 

IQ+’ -Q]/]Q] < 5 x IO-’ (Q:,fReandNu). 

(25) 

RESULTS AND DISCUSSION 

Before proceeding further with the present 
procedure, modified SIMPLER, two sets of cal- 
culation have been performed to verify its efficiency : 
a channel entrance region and a backward facing step 
of 2 to 1 expansion. The convergence behavior for 
various Reynolds numbers is compared with that of 
the standard SIMPLER algorithm in Fig. 3. Here, we 
confine ourselves to 2-D flows to save computational 
effort. The 3-D flow with a large region of reversed 
flow can also be treated efficiently as shall be seen later 
in this section. 

For comparison, the initial and boundary con- 
ditions are kept the same for both algorithms. The 
hybrid scheme in Patankar [ 181 is used for convective 
and diffusive derivatives and the relaxation factor is 
fixed at 0.8 for the momentum equations. Two solu- 
tions are identical when converged as the same diff- 
erencing scheme has been adopted; the accuracy of 
the method was verified, although the comparison is 
not shown here, against the parabolic solution for the 
developing flow in a tube reported earlier [14]. The 
convergence history of the channel flow is shown in 

Fig. 3a. Here, Rex denotes the sum of the absolute 
errors in the continuity equation over the whole 
domain. As seen in the figure, the present algorithm 
is superior to SIMPLER for all Reynolds numbers 
tested. The number of iteration required seems nearly 
independent of the Reynolds number for the present 
algorithm while that of the existing algorithm is 
adversely affected by the increasing Reynolds number. 
It should be noted that the run time per iteration is 
almost the same for both methods. A similar trend is 
observed in Fig. 3b for the backward facing step flow 
despite the large recirculating region. The degree of 
improvement, however, is relatively small. Never- 
theless the modification is still quite satisfactory as the 
iteration number is reduced by the factor of 1.552.7 
for the range of Reynolds number tested. 

The qalcqlat~ons for the entrance region of a hori- 
zontal tube have been performed for two Prandtl num- 
bers, 0.7 and 5, at a fixed Reynolds number of 250. 
The Grashof number is chosen to vary up to lo7 as 
the fully developed flow has dual solutions at these 
Grashof numbers [9]. A few different computational 
grids were tested for Pr = 0.7 and Gr = 10’ to confirm 
that the solution is grid independent. A 30 x 30 x 60 
grid which is uniform in the circumferential direction 
and densely distributed near the wall and the inlet was 
found adequate and has been used throughout in the 
present study. 

To gain insight of the global picture of the flow, 
the Fanning friction factor and the average Nusselt 
number distribution along the tube are presented in 
Fig. 4. The friction factor j’is deduced from the force 
balance and is given by : 

where p is the mean pressure in the section and the 
average Nusselt number at the section is defined as : 

qD 
I” 2 

N” = k(T,,, - Tb) 
T,v = i 

s 
T, do. (27) 

n n’2 

These two quantities are normalized by the values of 
the fully developed forced convection flow and shown 
in the figure. 

Near the inlet, the buoyancy force is yet to be 
developed and all the curves follow that of the forced 
convection flow. As Z increases, however, the buoy- 
ancy effects become noticeable and each curve starts 
to deviate from the limiting curve. The buoyancy force 
induces secondary flow and the resulting mixing 
increases the flow resistance and heat transfer between 
the wall and the fluid. The buoyancy effects become 
larger as Gr increases : the deviation from the forced 
convection value grows and the point where it starts 
moves upstream. The developing process is quite com- 
plex as the primary and the secondary flows are fully 
coupled : fRe and Nu oscillate until the flow gets fully 
developed and this will be brought up again later in 
the discussion. 
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FIG. 3. Convergence history : (a) channel flow: and (b) step flow 

Bifurcation to four-vortex solution occurs when the 
flow is near fully developed and is less dependent on 
Gr for Pr = 0.7 whereas, for Pr = 5, it occurs earlier 
in the developing stage and the point of its occurrence 
moves upstream as Gr increases. This is, as we shall 
see later, due to the steeper unstable temperature 
gradient in the bottom region for Pr = 5 caused by a 
thinner thermal boundary layer. 

The developing process can be better illustrated 
from the crossflow patterns : isotherms, crossflow vel- 
ocity vectors, isovels of the axial flow, and isobars at 
various sections are presented in the next few figures. 
Here, unless noted otherwise, the contours are drawn 
at equalticrement and the reference values are given 
in the final cross-section. Figure 5 shows the two- 
vortex solution of Pr = 0.7 at Gr = 106. At 
Z* = 2 x 10e3, which is approximately only one-half 
the diameter of the tube, the buoyancy driven sec- 
ondary flow has already been visibly developed 
especially near the heated surface. The phenomenon 

is still local in nature and the small inward motion in 
the upper half of the tube is due primarily to the 
growth of the boundary layer. The temperature dis- 
tribution suggests that the heat transfer is mostly con- 
ductive ; the axial velocity exhibits predominantly 
forced-convection-flow behavior. This is the point 
where the friction factor and the Nusselt number start 
to deviate from the forced convection values seen in 
Fig. 4. As Z increases the secondary motion becows 
stronger: the colder fluid in the core region moves 
downward to fill the void and a clear vertical flow 
pattern emerges. The downward movement of the 
high momentum fluid in the core region makes the 
maximum axial velocity occur somewhat below the 
center : the flow in the lower part accelerates slightly 
while that in the upper half decelerates. As the trend 
continues, a small region of axial flow reversal appears 
near the symmetry plane along the top surface 
(Z* = 6.5 x IO-‘) and w will get back to this point 
later. 
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Fw. 4. Axial variation of Fanning friction factor and average Nusselt number: (a) Pr = 0.7; and (b) 

Pr=S. 

The heat transfer in the cross-section is handsomely 
enhanced by this mixing action. The average Nusselt 
number does not rise immediately, however, because 
the growing thermal boundary layer hinders the heat 
transfer. The balance between these two effects is 
reached at Z* 2 5 x lo-’ and hence occurs the mini- 
mum of .z (Fig. 4). The mixing, on the other hand, 
makes the temperature more uniform and thus 
dampens the secondary motion. The oscillatory be- 
havior of ,f and NM in Fig. 4 is an evidence of this 
process. A similar phenomenon was also observed and 
discussed in Mahaney et al. [I 31 for a rectangular duct 
flow. 

The developing process of a higher Gr ( = 10’) is 
shown next in Fig. 6. The secondary motion in this 
case is much stronger, which is expected. and also 
the flow exhibits very different initial behavior: the 
pressure variation in the cross-section is much larger 
and the longitudinal boundary-layer growth is more 
uneven. The boundary layer thickens rapidly along 
the region near 0 = 0, which can be seen from axial 
velocity distribution; the secondary flow appears to 
be initiated by this growing boundary layer and the 
considerable pressure difference between the upper 
and lower regions. This is apparent at Z* = lo-’ 
where the main direction of flow is downward. This 

crossflow motion accelerates the axial flow in the 
lower half and retards it in the upper region. A region 
of reversed flow soon appears along the top surface 
(Z* = 10 ‘), which, although not as large, was also 
spotted in the earlier case. This may be attributed to 
the adverse pressure gradient shown in Fig. 7: the 
pressure gradient along 0 = 0 is, in general. less fav- 
orable than elsewhere at the outset and eventually 
becomes adverse before it assumes the fully developed 
value. The flow reversal makes the fluid in the upper 
region hotter than that below, especially in the first few 
cross-sections, because of the convective heat transfer 
from the downstream fluid. 

Farther downstream, the buoyancy driven sec- 
ondary flow penetrates to the upper region along the 
tube surface and the region of reversed flow diminishes 
gradually. This brings the vertical motion upward and 
the strong upward flow forms a new vortex in the 
upper region. The original vortex, although weak- 
ened, remains at its original position and these two 
corotating vortices, which are connected through a 
saddle point, coexist briefly before the upper one 
engulfs the lower one at Z* z 10 2. 

From then on, the developing process is pretty 
much similar to that of Gr = 106. Since the buoyancy 
effect is much larger in this case, the secondary motion 
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Z* = 6.5~10~ Z’ = 8~10-~ 

FIG. 5. Flow development of two-vortex solution for Pr = 0.7, Gr = IO6 

is correspondingly stronger. The strong secondary The development of the flow at Gr = lo6 for Pr = 5 
motion helps mixing and results in a more uniform is shown next in Fig. 8. The vortex formation and 
temperature field and weaker driving force. The clear its development are qualitatively similar to those of 
oscillatory behavior of :f and Nu shown in Fig. 4 Pr = 0.7 until Z* = 1.5 x 10m3. After the vortex 
reflects this fluctuation m secondary motion, which sweeps over the crosssction to the top, the secondary 
was mentioned earlier. motion decreases as the mixing of the flow takes effect, 
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F1o.‘6. Flow development of two-vortex solution for Pr = 0.7, Gr = lo7 

i.e. reduction in buoyancy force : the flow in the upper becomes stably stratified. The active secondary flow 
region (Z* = 3 x 10--3) and subsequently in the core - is confined to a small region close to the wall as the 
region (Z* = 4.5 x 10 ‘) slows down. The strength of flow develops fully. The less vigorous motion restricts 
the secondary flow is, in general, weaker than that for mixing and, hence, the flow attains a higher maximum 
Pr = 0.7. This is because the thermal boundary layer axial velocity. 
is thin and, as a result, the fluid in the core region To illustrate how the flow bifurcates to a four-vor- 
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Fro. 7. Pressure gradient along three meridian sections for 
Pr = 0.7. Gr = 10’. 

tex type, the flow developments downstream of the 
bifurcation point are shown in Fig. 9 for Pr = 5 and 
Gr = 5 x 106. The four-vortex solution may suc- 
cessfully be obtained by disturbing the initial guess : 
the solution of the two-vortex flow is inverted and 
then fed in at the start of calculation. Although the 
values of Nu begin to show some difference at 
Z* = 4 x 10 3 in Fig. 4, the crossflow pattern there 
remains unchanged in Fig. 9. However, as the 
crossflow along the tube surface in the bottom region 
slows dow%a very strong temperature gradient in 
the vertical direction, i.e. along the symmetry plane, 
builds up. There seems to be a point where the two- 
vortex secondary flow is only neutrally stable : if the 
fluid particle near the bottom maintains its direction, 
the resulting flow is of two-vortex type that we have 
seen: hotvever, any tilt toward the vertical direction 
results in a totally different flow type as this vertical 
motion is self-sustaining.-This vertical convection pro- 
cess heats up the fluid in the plane of symmetry and 
thus increases the buoyancy force in that direction. 
This draws fluid from the side and forms another pair 
of vortices, i.e. a four-vortex crossflow pattern 

The bifurcation is expected to occur more readily 
as the buoyancy effect, i.e. Gr, increases as shown in 
Fig. 4. It is also evident from the figure that the 
increasing Pr enhances the bifurcation to four-vortex 
pattern. The secondary motion and mixing in the 
higher Pr Aow are weak and thus the fluid close to the 
wall carries less momentum. This, coupled with the 
much higher unstable temperature gradient in the bot- 
tom re ion due to the thinner thermal boundary layer, 
makes $h e flow more susceptible to instability. The 
flow change in the lower part of the duct causes the 
friction factor and the Nusselt number to rise from 
those of the two-vortex type. Here again the flow 
oscillates due to the fluctuating buoyancy force until 
it gets fully developed. 

The overall flow development may be summed up 

nicely in a perspective view of the skin-friction 
coefficient Cr and the Nusselt number Nu. 

Cf =A qD 
N” = k(T,” - T,,) (28) 

gPW 

where r, is the wall shear stress in the axial direction. 
Nu is meaningful only in the lower half of the duct. 

The results for Pr = 0.7 at Gr = lo6 are shown in 
Fig. 10a. Near the inlet, the buoyancy effects are neg- 
ligible and C, and NM decrease uniformly as in the 
forced convectian boundary-layer flow. The first sign 
of the buoyancy effect appears in the Cr plot as a local 
minimum near 0 = z/2. This point coincides with the 
point where the secondary flow loses its upward 
momentum and reverses direction (see Fig. 5). What 
happens is that the local fluid there is replaced by the 
lower momentum fluid from below : consequently, the 
axial velocity is reduced along with the skin friction. 
Since the vortex moves upward and gathers its 
strength as it travels downstream, the position of local 
minimum in Cr moves upward (6 decreases) and the 
valley gets deeper as Z increases. Before developed 
fully, the flow near the bottom accelerates due to the 
momentum transfer by the secondary flow; this also 
reduces the wall temperature ( Tw) and raises Nu in the 
region. 

The friction-factor and Nusselt-number dis- 
tributions for Gr = 10’ are presented in Fig. lob. The 
main difference in the C, distribution from that for 
Gr = lo6 is a much stronger acceleration close to the 
vortex center near 0 = 7c/2. The axial flow deceleration 
in the upper part of the duct is similar but more 
pronounced. Hence, a larger and stronger reversed 
flow region is formed. Moreover, the strong accel- 
eration near the vortex center makes the flow deceler- 
ate in the lower part as well as in the upper part to 
satisfy the continuity constraint. With increasing Z, 
the point of maximum Cr moves downward (f~’ 
increases) in accordance with the position at which 
the axial velocity becomes maximum. The peak is 
shown near Z* = lo-* at the bottom of the duct. 
The strong axial velocity there enhances heat trans- 
fer and, consequently, Nu is also largest near that 
position. 

The two- and four-vortex solutions for Pr = 5 at 
Gr = 5 x lo6 are compared in Fig. 11. The two-vortex 
solution is qualitatively similar to that of Pr = 0.7 and 
Gr = 10’ except for the relatively large circumferetiial 
variation. The four-vortex solution, on the other 
hand, shows clearly the effects of the second vortex 
near the bottom : the distributions of Cr and Nu have 
been altered significantly in that region. As the flow 
develops to its final state, the Grand NM values behave 
similarly: the vortex motion that moves high 
momentum cold fluid from the core to the bottom 
makes both parameters increase. The peak value of 
Nu is nearly twice as large as that of the two-vortex 
solution. The Nu dist‘&ution has two peaks before 
they merge into one as the flow gets fully developed. 
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Z* = 8x1d4 

FIG. 8. Flow development of two-vdrtex solution for Pr = 5, Gr = IO' 

The process can also be observed in the isotherms in and the bottom half maintained at the constant heat- 
Fig. 9, in which the temperature gradient normal to flux condition has been investigated. The fully elliptic 
the surface shows two distinct peak values. 3-D Navier-Stokes equations together with the con- 

SUMMARY 
tinuity and energy equations are solved by a modified 
SIMPLER algorithm. The global continuity at each 

The developing mixed convection flow in a hori- cross-section in the flow is ensured by applying cor- 
zontal circular tube, the top half of which is insulated rections to the axial velocity and the bulk pressure. 
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(4 
FIG. 10. Local friction factor and Nusselt number of two-vortex solution for Pr = 0.7 : (a) Gr = IO’, and 

(b) Gr = IO’. 

Comparing it with the standard SIMPLER algorithm, 
the procedure is found more efficient and robust for 
various cases tested. 

The secondary flow develops almost immediately 
for the Re-Gr combinations that have been examined. 
The crossflow motion begins with the ascending ther- 
mal plume along the wall. This disrupts the thermal 
boundary layer and, thegefore, the heat transfer is 
enhanced. The average Nusselt number of the section, 
Nu, that decreases initially because of the thermal 
boundary-layer growth, starts to rise as the secondary 
flow becomes more active. The ups and downs of 
the buoyancy force due to unstable stratification and 
subsequent mixing make the mean Nusselt number 
and friction factor oscillate before settling to the fully 
developed values. 

The developing processes start out similarly for 
both Pr = 0.7 and 5 except that the secondary flow of 
the latter is weaker. Approaching to the fully 

developed state, however, the secondary motion in the 
core region diminishes and the temperature outside 
the thermal boundary layer becomes stably stratified 
for Pr = 5. 

The bifurcation to a four-vortex flow is possible 
when the radial temperature gradient near the bottom 
surface becomes sufficiently large. Only then can the 
disturbance in the vertical direction be sustained and 
develop into a secondary vortex. For a given Reynolds 
number, the four-vortex flow is more likely to occur 
as Gr and/or Pr increase(s). Increasing Gr makes the 
buoyancy force larger whereas raising Pr hinders mix- 
ing and helps the temperature gradient to rise. Also for 
high Gr (> lo6 for Pr = 0.7 and 22 x lo6 for Pr = 5), 
large buoyancy effects cause the flow to reverse along 
the top surface ; the massive reversed flow makes the 
flow develop quite differently from that without it. 

The present paper demonstrates successfully how 
the flow eventually develops to either of the two final 
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states, i.e. two- or four-vortex flow; this also verifies 
that, for a certain Grashof number range, both flows 
do occur. 
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